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Predictive numerical simulations of subsurface processes require not only more 
sophisticated physical models but also more accurate and reliable discretization 

methods for these models. We have studied a new monotone finite volume scheme 
for diffusion problems with a heterogeneous anisotropic material tensor [1]. 
Examples of anisotropic diffusion include diffusion in geological formations, head 
conduction in structured materials and crystals, image processing, biological 
systems, and plasma physics. Development of a new discretization scheme should 
be based on the requirements motivated by both practical implementation and 
physical background. This scheme must meet the following conditions: 

-be locally conservative; 
-be monotone, i.e., preserve positivity of the differential solution; 
-be applicable to unstructured, anisotropic, and severely distorted meshes; 
-allow arbitrary diffusion tensors; 
-result in sparse systems with a minimal number of non-zero entries; 
-have higher than the first-order accuracy for smooth solutions. 

The discretization methods used in existing simulations, such as the mixed finite 
element (MFE) method (Fig. 1), finite volume (FV) method, mimetic finite difference 
(MFD) method, and multipoint flux approximation (MPFA) method, satisfy most 
of these requirements except the monotonicity. They fail to preserve positivity of 
a continuum solution when the diffusion tensor is heterogeneous and anisotropic 
or the computational mesh is strongly perturbed. For instance, in simulations 
of a subsurface transport, a negative discrete solution of the pressure equation 
implies nonphysical Darcy velocities and hence wrong prediction of a contaminant 
transport. 

Recently a few nonlinear monotone schemes have been suggested [2,3]. We 
studied schemes based on the nonlinear flux formula proposed in [3]. We rectified 
the LePotier’s scheme for the case of unstructured triangulations and full diffusion 
tensors by giving correct positions of reference points. To improve robustness 

of the scheme, we proposed an alternative interpolation technique [4]. We gave 
the first proof of scheme monotonicity for the steady diffusion equation. We 
studied numerically important features of the scheme such as violation of the 
discrete maximum principle and impact of the diffusion anisotropy on the scheme 
convergence. We extended the scheme to shape regular polygonal meshes and 
heterogeneous isotropic diffusion tensors. 

The mixed form of the diffusion equation includes the mass conservation equation 
and the constitutive equation: 

divq = Q,  
q = –D gradC, 

where D is the diffusion tensor, Q is the source term, and q is the flux of 
concentration C. 

All the methods mentioned above use the same discretization of the mass 
conservation equation and differ by their approximation of the flux (constitutive) 
equation. In the nonlinear finite volume scheme a reference point is defined for each 
mesh cell T to approximate the concentration C. The position of the reference 
point depends on the geometry of T and value of the diffusion tensor. For isotropic 
diffusion tensors and triangular cell T, the center of the inscribed circle is the 
acceptable position for the reference point. 

The flux q is approximated at the middle of each mesh edge using a weighted 
difference of concentrations in two neighboring cells. Nonlinearity comes from 
the fact that these weights depend on a concentration at the edge vertices. To 
approximate solution at a mesh vertex, a linear interpolation method has been 
proposed in [3]. This method uses the three closest reference points, which form 
a triangle containing the vertex. We found out that this method is not robust for 
problems with strong anisotropy and sharp gradients. We proposed the inverse 
distance weighting interpolation method [4] for such a problem type. This method 
uses values at all reference points from the closest neighborhood of the vertex. 
Numerical experiments show that the new method is more stable for highly 
anisotropic problems. 

The nonlinear finite volume method results in a sparse system whose dimension 
is equal to the number of mesh cells T. For triangular meshes, the matrix of this 
system has at most four nonzero elements in each row. To solve the nonlinear 
algebraic problem we use the Picard iterative method, which guarantees 
monotonicity of the discrete solution for all iterative steps. 
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The computational results demonstrate the flexibility and accuracy of the scheme 
[2]. For sufficiently smooth solutions, we achieve the second-order convergence for 
concentration C and at least the first-order for flux q in a mesh-dependent L2-norm.  
For nonsmooth, highly anisotropic solutions we observe at least the first-order 
convergence for both unknowns.

For more information contact Daniil Svyatskiy at dasvyat@lanl.gov.
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Fig. 1.  Mixed finite element method, Cmin = –1.7h

Fig. 2.  Nonlinear finite volume method, Cmin = 0h

Profile of solution Ch(x,y) on the distorted triangular grid. Domain: unit 
square with the hole in the center. Problem: diffusion equation with highly 
anisotropic tensor. Ratio of tensor’s eigen-values is 103. Tensor is rotated 
with respect to coordinate axes on 60˚ clockwise. Ch = 2 on the hole,  
Ch = 0 on the boundary of unit square. Analytical solution satisfies 
maximum principle, 0 ≤ C(x,y) ≤ 2. The MFE method produces nonphysical 
solution with strong negative values.


